Enhancing Workplace Safety: The Importance of Utilizing Outside Experienced Experts and The WAVR-21 Assessment

Enhancing Workplace Safety: The Importance of Utilizing Outside Experienced Experts and The WAVR-21 Assessment

Workplace violence is a serious and increasingly prevalent issue, requiring meticulous and impartial assessment for effective mitigation and prevention. It is vital that organizations leverage the expertise of external specialists in workplace violence assessment to navigate this complex and sensitive landscape. These professionals bring a unique blend of neutrality, proficiency, and experience that ensures a comprehensive and accurate evaluation of workplace violence risks.

External experts, unburdened by ties to the company or its employees, offer an unbiased evaluation of workplace violence risks, navigating the situation without being influenced by internal politics or personal relationships. Their impartiality is vital for an unfiltered assessment, identifying potentially hidden or understated risks, thus ensuring an accurate and comprehensive understanding of the situation.

Their specialized knowledge and experience further bolster the effectiveness of their assessments. Equipped with the latest research, industry best practices, and legal requirements associated with workplace violence, these experts can identify early warning signs and devise strategies to counter potential threats. Their in-depth understanding and practical expertise make them invaluable assets in providing sound advice that can significantly mitigate workplace violence risks.

One of the key tools these experts leverage is the Workplace Assessment of Violence Risk (WAVR-21), an empirically based structured professional judgement instrument (SPJ) designed to evaluate the risk of violence within a workplace environment. Developed by leading experts in threat assessment, the WAVR-21 is a comprehensive approach to workplace violence, incorporating 21 dynamic and static factors relevant to this issue.

The WAVR-21’s methodical approach ensures a balanced and accurate evaluation by encouraging the consideration of multiple information sources. It aids in identifying the context and nature of the threat, as well as the personality and situational factors influencing an individual’s behaviors. Crucially, the tool guides the development of effective management and intervention strategies.

The importance of having an outside expert who is properly trained in use of the WAVR-21 instrument cannot be overstated. These professionals have undergone specific training to conduct assessments accurately and effectively. They possess a deep understanding of different risk factors, ensuring an accurate and nuanced assessment. Additionally, they can incorporate the tool into a broader assessment strategy, considering other relevant factors such as organizational culture, policy, and procedures.

WAVR-21 qualified professionals are trained to interpret the results of the assessment in a meaningful way, considering the specific context and dynamics of the workplace. They can provide detailed recommendations for risk reduction measures, intervention strategies, and ongoing management practices, thus ensuring a thorough, informed assessment tailored to the unique circumstances of each workplace.

Another crucial benefit of engaging an outside expert is their ability to maintain confidentiality and trust, often creating a secure environment for employees to express their experiences and concerns. Given the complexities of legal and compliance issues associated with workplace violence, outside experts adept at navigating these regulations and standards can ensure a comprehensive, legally sound assessment, helping organizations avoid potential liabilities.

Upon completion of the assessment, the outside expert can provide expert guidance in developing preventive measures and response protocols. Their recommendations, grounded in industry best practices and tailored to the organization’s specific needs and challenges, strategically equip the organization to prepare for and mitigate potential threats effectively.

In conclusion, engaging a WAVR-21 certified outside expert for workplace violence assessment isn’t just a prudent decision—it’s a vital strategic move that ensures the long-term safety and success of an organization. By combining their expertise with the structured approach of the WAVR-21, these experts ensure a comprehensive evaluation of potential risks and a robust strategy to mitigate workplace violence. The result is a safer, more secure work environment that promotes productivity and employee well-being.

Finding an expert

Finding an expert, specifically a WAVR-21 qualified professional for workplace violence assessment, involves a few steps:

    1. Professional Associations and Organizations: Professional associations related to workplace violence prevention and threat assessment are excellent resources. They also provide resources and information that can be helpful in your search.
    1. Referrals: Talk to peers in your industry or a trusted legal advisor who may have used such services before. They can provide a firsthand account of their experiences and recommend experts they’ve found reliable and competent.
    1. Online Search: A simple online search can also help you identify potential experts. Look for professionals who specialize in workplace violence assessment and are WAVR-21 certified. Ensure to verify their credentials and look for reviews or testimonials.
    1. Training Providers: Institutions that provide WAVR-21 training may also offer consultation services or be able to recommend certified professionals. The creators of WAVR-21, for instance, offer training and consultation services.
    1. Consulting Firms: There are many consulting firms specializing in workplace violence prevention and threat assessment that employ WAVR-21 certified professionals. Look for firms that have a solid reputation and extensive experience.

Once you have identified potential experts, consider the following:

Experience: Check the expert’s experience in workplace violence assessment. How many assessments have they conducted? What types of organizations have they worked with? Do they have experience in your specific industry?

Qualifications: Ensure that they are appropriately trained in use of the WAVR-21 instrument and check for any other relevant qualifications or certifications.

Approach: Talk to them about their approach to violence risk assessment. Does it seem comprehensive and systematic? Does it align with your organization’s needs and culture?

References: Ask for references from previous clients. Reach out to these references to learn about their experiences with the expert.

Remember that the process of finding an expert might take some time, but it is an investment that could potentially save lives, prevent harm, and protect your organization in the long run.

Facebook
Twitter
LinkedIn
Email

Physical Security Design and The Active Shooter (Pt. 1)

Physical Security and Active Shooter Attacks

Physical Security Design and The Active Shooter (Pt. 1)

When many people think of physical security, the first ideas that come to mind are things like locks, alarm systems, screening with metal detectors, CCTV, etc.—hardware components or procedures. Although these elements play a role in physical security, they have no value outside the context of the overarching system design.

In the context of active assailant attacks, performance-based physical security design integrates Detection, Delay, and Response elements in a manner that mathematically reconciles the time required for an adversary to commence mass killing and the time required for detection and response by security or police.

Fundamentally, physical security design is a mathematics problem defined by several key times and probabilities. The main performance metric of a Physical Protection System (PPS) design is its Probability of Interruption, defined as the probability that an adversary will be detected and intercepted by a response force before he/she can complete their objective.[1] The most important elements determining the Probability of Interruption are the Adversary Task Time (total time required for an adversary to enter a facility and access their target) and response force time. If the total time for detection, assessment, communications, and response force intervention is longer than the adversary task time, the system will fail. Specific elements alone (such as having an access control system or CCTV cameras) mean nothing outside the context of the overall system design. Individual PPS elements must work together integrally to reconcile these key times or the adversary will succeed.

In the context of active shooter events, detection usually is the result of visual or audible observation when the attack commences. Detection may also result from an alarm signal generated by forced entry into secured spaces or gunshot detection systems. The Time of Detection during an attack is represented in figure 1 as TD.

The time the report is received by authorities and/or assessed by a security control room for deployment of on-site armed officers is represented in the diagram as TA (Time of Assessment).

After the 911/112 center or security control room is alerted, the response force is subsequently dispatched to intercept and neutralize the adversary. This is represented in the following diagram as the Time of Interruption (TI).

Physical Protection System Times and Functions

While the alert and response force deployment is in progress, the adversary advances through barriers and distance to access targets and initiate mass killing. The time mass killing is in progress is represented in the previous diagram as Time of Completion (TC). The Adversary Task Time is the cumulative time between the Time of Detection and the Time of Completion. If the Time of Interruption is before the Time of Completion, the Physical Protection System (PPS) is successful in its function of preventing mass killing.

In most previous active shooter attacks, deficiencies in one or more key functional elements (Detection, Delay, or Response) result in a situation where mass killing (TC) initiates before the response force intervenes (TI).

Based on data yielded during several studies of active shooter attacks, the consequences of the difference in time between commencement of mass killing and response force intervention (TC versus TI) can be estimated as one casualty per 15 seconds.[2] 

Physical Security and Active Shooter Planning

Although the ideal objective of PPS design is to interrupt mass killing before it commences, real world conditions often limit the possibility of achieving a high Probability of Interruption. This type of situation is often common in ‘soft target’ facilities due to the need for unobstructed public access and facilities reliant on the unpredictable response times of off-site police. Other real world challenges such as cultural expectations, branding, and budget boundaries often limit the feasibility of implementing ideal physical security measures. And if an attack is launched by an insider adversary (e.g., employee, student, etc.) already inside the facility, physical protection elements at outer protective layers (e.g., perimeter, building envelope, entrances, etc.) will have little or no benefit.

Nevertheless, all measures that increase Adversary Task Time and expedite response time have a direct benefit in reducing potential casualties by narrowing the gap between TC and TI.

Sandy Hook Elementary School, 14 December 2012: Case Study of Performance-Based Physical Security Principles in Practical Application

 At approximately 09:34, Adam Lanza used an AR-15 rifle to shoot through a tempered glass window adjacent to the school’s locked entrance doors and passed into the lobby.[3]

 After killing the school principal and a school psychologist and injuring two other staff members who entered the hallway to investigate, Lanza entered the school office. Meanwhile, staff members concealed inside the school office and nearby rooms initiated the first calls to 911. Staff located throughout the building were alerted when the ‘all-call’ button on a telephone was accidentally activated during a 911 call.

After finding no targets in the office, Lanza returned to the hallway and proceeded into the unlocked door of first grade classroom 8 where mass murder commenced (approx. 09:36).[4] In less than two minutes, Lanza killed two teachers and fifteen students.

Sandy Hook Elementary Attack Diagram

As the attack in classroom 8 was in progress, teacher Victoria Soto and a teaching assistant in classroom 10 attempted to conceal children in cabinets and a closet.

After exhausting targets in classroom 8, Lanza proceeded into classroom 10 and killed Ms. Soto, assistant Anne Murphy, and five children. Although the exact reason Ms. Soto did not lock the door to classroom 10 is unknown, all classrooms at Sandy Hook Elementary School featured ANSI/BHMA “classroom-function” (mortise F05 and bored F84) locks which can only be locked with a key from the hallway-side of the door.

The tragedy ended in classroom 10 when Lanza committed suicide at 09:40 while police were preparing for entry into the building.

As common in U.S. primary schools, Sandy Hook Elementary School relied on off-site police as their response force during emergency events. Response was first initiated at 09:35 when a staff member called 911 to report the crisis. At 09:36, an alert was broadcast by radio and police units were dispatched to the school. The first police unit arrived at 09:39, followed immediately by two other units. After assessing the scene and planning a point of entry, the officers organized into a contact team and made entry into the school at 09:44.

In the context of physical protection system performance, the adversary task time (time between when Lanza’s entry commenced and mass killing was in progress) at Sandy Hook Elementary School was approximately 23 seconds. The time between detection of the attack and on-site arrival of police was slightly less than three minutes. However, there was an additional 5-6 minutes of time as officers assessed the situation and organized before making entry and effectively moving indoors to neutralize the killer. When assessing incidents involving response by off-site police, arrival time at the scene is irrelevant. What matters is the time ending when police arrive at the immediate location of the adversary ready to neutralize the threat. This describes the contrast between On-Site Response Time and Effective Response Time. At Sandy Hook Elementary School, the Effective Response Time was approximately nine minutes.

As illustrated in the following table, the variation between Adversary Task Time and Effective Response Time witnessed at Sandy Hook Elementary School has been historically common during active assailant attacks. In each of the six events documented below, mass killing was in full progress within 1-3 minutes of the time the attacker entered the building or shot the first victim. By comparison, the Effective Response Times ranged between 7 and 38 minutes, with most events ending prior to intervention by police when the attacker(s) escaped or committed suicide.

Active Shooter Timeline Infographic

Mitigating the consequences of active shooter attacks through better physical security design and integration

 

In the Newtown tragedy, PPS failure was largely the result of inadequate delay in relation to the time required for response by off-site police. When the attack is analyzed using Sandia’s Estimate of Adversary Sequence Interruption (EASI) Model, the original PPS at Sandy Hook Elementary School would have had a Probability of Interruption of 0.0006 (Very Low).

Sandy Hook Shooting Timeline
Sandy Hook Shoting - EASI Attack Analysis

In the case of Sandy Hook Elementary School, there are a number of measures that could have improved overall system performance.

Upgrade the facade with intrusion-resistant glazing. Adam Lanza entered the building by bypassing the locked entrance doors and shooting a hole through the adjacent tempered glass window. He then struck the fractured window and climbed through the breach. Tempered safety glass is generally only 4-5 times resistant to impact as annealed glass and provides minimal delay against forced intrusion. According to testing documented by Sandia National Laboratories, 0.25 inch tempered glass provides 3-9 seconds of delay against an intruder using a fire axe and the mean delay time for penetrating 1/8″ tempered glass with a hammer is 0.5 minutes.[5] However, impact testing documented by Sandia did not account for the fragility of a tempered glass specimen after first being penetrated by firearm projectile. In penetration tests Critical Intervention Services conducted of 1/4-inch tempered glass windows using several shots from a 9mm handgun to penetrate glazing prior to impact by hand, delay time was only 10 seconds.[6]

Upgrading facade glazing with the use of mechanically-attached anti-shatter film could have improved delay time at the exterior protective layer by 60-90 seconds.[7]

Construct an interior protective layer to delay access from the lobby into occupied school corridors. Once Adam Lanza breached the exterior facade into the school lobby, there were no additional barrier layers delaying access into areas occupied by students and faculty. A significant percentage of active shooter assaults by outsider adversaries originate through main entrances and progress into occupied spaces.[8] Some examples include attacks at the Riena Nightclub (2017), Pulse Nightclub (2016), Charlie Hebdo Office (2015), Inland Regional Center (2015), Colorado Springs Planned Parenthood (2015), Centre Block Parliament Bldg (2014), and US Holocaust Memorial Museum (2009).
 
An ideal lobby upgrade would be designed to facilitate reception of visitors while securing the interior of the school through a protective layer constructed of intrusion-resistant materials. Depending on material specifications, an interior barrier layer could have delayed Adam Lanza’s progress into the school by an additional 60-120 seconds.
 
Sandy Hook Elementary School Lobby Concept

Replace “classroom-function” locks on school doors with locks featuring an interior button or thumbturn. All classroom doors inside Sandy Hook Elementary were equipped with ANSI “classroom-function” locks (mortise F05 and bored F84). These are perhaps the worst choice of locks possible for lockdown purposes during active shooter events. As witnessed in a number of attacks, doors equipped with classroom-function locks often remain unlocked due to difficulty locating or manipulating keys under stress. In addition to Sandy Hook classroom 10, another incident where this situation clearly contributed to unnecessary casualties was the 2007 Virginia Tech Norris Hall attack.[9] In these two events alone, 26 students and faculty were killed and 24 wounded specifically because the doors to classrooms could not be reliably secured.

Ideal specifications for door locks would be ANSI/BHMA A156 Grade 1 with an ANSI lock code of F04 or F82.[10] Mechanical locks rated ANSI/BHMA Grade 1 have been successfully evaluated under a variety of static force and torque tests. Locks coded as F04 and F82 feature buttons or thumbturns to facilitate ease of locking under stress.

Although there are no empirical sources citing tested forced entry times against ANSI/BHMA A156 Grade 1 rated locks, it is estimated that a committed adversary using impact force with no additional tools could penetrate improved locks in approximately 90-110 seconds.

Replace door vision panels with intrusion-resistant glazing. During the attack at Sandy Hook Elementary, Adam Lanza was able to enter classrooms 8 and 10 directly through unlocked doors. If these classrooms were secured, the tempered glass vision panels on all classroom doors could have been easily breached to facilitate entry in less than 10 seconds.

An effective approach to physical security specification would ensure that all barriers composing the classroom protective layer are composed of materials with similar delay time values. This could be accomplished by ensuring that vision panels are no wider than 1.5″ (3.8 cm) or constructed of intrusion-resistant glazing such as laminated glass, polycarbonate, or reinforced with anti-shatter film.

If the aforementioned barrier improvements were employed in the PPS design at Sandy Hook Elementary School, Adam Lanza’s access into occupied classrooms would have been delayed by an additional 162-312 seconds. This would have improved the overall performance of the PPS by potentially increasing the Adversary Task Time to 185-335 seconds before mass killing was in progress. Although this is a significant improvement from the original Adversary Task Time (est. 23 seconds), 335 seconds is still less than the estimated response time of police during the original event (est. 544 seconds).

In many cases, accomplishing the performance-based objective of interrupting an active shooter before mass killing commences requires a combined approach aimed at both increasing delay time and decreasing response force time. In the case of Sandy Hook Elementary School, decreased response time could have been facilitated by the use of gunshot detection technology or duress alarms, improved communications procedures, and similar improvements. Any measure that decreases alert notification and response times has a beneficial impact on system performance. Even if enhancements only reduce response time by 10 or 15 seconds, such improvements have the theoretical benefit of reducing casualties by one victim per fifteen seconds of decreased response time.

In the situation of Sandy Hook Elementary School, the greatest improvement could have resulted from having an on-site response force (e.g., armed school resource officer) capable of reliably responding anywhere on the school campus within 120 seconds of alert.[11] If this measure were implemented, the total estimated alert and response time could have been improved to 147-157 seconds. When compared to the increased Adversary Task Time of 206-316 seconds, the improved PPS design would have likely resulted in interruption before mass homicide commenced. When analyzed using Sandia’s Estimate of Adversary Sequence Interruption (EASI) Model, the improved PPS would have resulted in a Probability of Interruption of 0.87 (Very High).

The following table and spreadsheet models the PPS improvements described in this article to demonstrate how performance-based physical security design can influence the outcome of armed attacks.

Sandy Hook Elementary - Improved Security Design
Sandy Hook Elementary Physical Security

Threat Characteristics and Physical Security Performance

The delay time expectations of physical barriers cited in this article were based on the weaponry and methods of entry employed by Adam Lanza at Sandy Hook Elementary School. If Lanza had employed different tools or methods, the delay time of barriers would have correspondingly been different. The same principle is true for bullet-resistant barriers. The ballistic resistance of materials is directly relative to the caliber and type of ammunition used by an adversary.

To ensure a security design performs as expected, it is first necessary to establish a definition of the adversary’s likely capabilities and tactics. In Part 2 of this series, we’ll continue this discussion by exploring trends in the behavior of attackers, threat capabilities and methods, and approaches to developing a Design Basis Threat (DBT) suitable for security planning.

[1] Garcia, Mary Lynn. Design and Evaluation of Physical Protection Systems. Burlington, MA: Elsevier Butterworth-Heinemann, 2007.

[2] Anklam, Charles, Adam Kirby, Filipo Sharevski, and J. Eric Dietz. “Mitigating Active Shooter Impact: Analysis for Policy Options Based on Agent/computer-based Modeling.” Journal of Emergency Management 13.3 (2014): 201-16.

[3] Sedensky, Stephen J. Report of the State’s Attorney for the Judicial District of Danbury on the shootings at Sandy Hook Elementary School and 36 Yogananda Street, Newtown, Connecticut on December 14, 2012. Danbury, Ct.: Office of the State’s Attorney. Judicial District of Danbury, 2013. Print.

[4] Time estimated based on witness event descriptions and assessment of time required to walk through the school office and down the corridor to classroom 8.

[5] Barrier Technology Handbook, SAND77-0777. Sandia Laboratories, 1978.

[6] Critical Intervention Services assisted a window film manufacturer in 2015 in conducting a series of timed penetration tests of 1/4-inch tempered glass windows with mechanically-attached 11 mil window film. The tests involved penetration by firearm followed by impact (kicking and rifle buttstock). The delay times ranged from 62 to 94 seconds and deviated according to the aggression of our penetration tester.

[7] Ibid.

[8] Gundry, Craig S. “Analysis of 20 Marauding Terrorist Firearm Attacks.” Preparing for Active Shooter Events. ASIS Europe 2017, 30 Mar. 2017, Milan, Italy.

[9] Mass Shootings at Virginia Tech. April 16, 2007. Report of the Review Panel. Virginia Tech Review Panel. August 2007. pp.13.

[10] ANSI/BHMA A156.13, Mortise Locks and Latches. Builders Hardware Manufacturers Association (BHMA), New York, NY, 2011.

[11] CIS Guardian SafeSchool Program® standards define a performance benchmark of 120 seconds as the maximum time for acceptable response by on-site officers. However, achieving this type of response time in many facilities requires careful consideration of facility geography, communications systems, access obstructions, and officer capabilities (e.g., training, physical conditioning, etc.).

Facility Preparation and The Active Shooter Threat (Main Article)

Facility Preparation and The Active Shooter Threat (Main Article)

Comprehensive risk management programs employ a multi-layered approach to reducing the risk of active shooter violence. Issues such as threat recognition and assessment, reinforcement of positive workplace/school climate and culture, suspicious activity recognition and reporting, emergency planning, and employee training all contribute to reducing the risk of active shooter attacks. However, if measures employed to prevent attacks are unsuccessful or an outsider targets the facility in a manner that evades our proactive influence, physical security and infrastructure readiness are crucial factors influencing the consequences of the event.

In recent years, much has been published focused on managing risks of active shooter violence through preventive approaches and response training. Organizations such as the US Department of Homeland Security, ASIS International, and the Association of Threat Assessment Professionals offer a wealth of information to assist in developing threat assessment and management programs and training employees in active assailant response.

Unfortunately, far less attention has been devoted to equally important matters of building design and physical security. Withstanding a handful of essays and school-related publications, there is little guidance in print about designing and preparing facilities for active shooter violence. Further, most guides that have explored this subject to date have been basic and tend to overlook important vulnerability issues and technical details.

The following collection of articles aims to address this situation and serve as a comprehensive design guide and technical reference for architects, building managers, and security professionals. The essays in this series were originally prepared for a book I have been writing for the past few years. Although I will probably submit the final body of work for print when everything is complete, we have decided to publicly release what has been written thus far in hope of filling the gap in current literature.  

Protective Design Concepts

Parts 1-4 of this series provide an overview of protective strategy for reducing active shooter risk, principles of performance-based physical security, and practical issues that should be considered during the design process.

      1. Physical Security Design & The Active Shooter
      2. Design Basis Threat & The Active Shooter
      3. Facility Preparation for Active Shooter Attacks: Key Objectives
      4. Unique Planning Considerations

Universal Protective Measures

Parts 5-14 of the series address specific preparation matters applicable to most facilities including topics such as secure entry control, safe rooms, egress design, and emergency communications infrastructure.

      1. Outdoor Protective Measures
      2. Building Envelope & Entrance Design
      3. Entry Control Screening
      4. Access Control Systems
      5. Safe Rooms
      6. Egress Design
      7. Attack Detection Systems
      8. Emergency Communications Infrastructure
      9. Armed Response Officers
      10. CCTV and Control Rooms
  1. Technical References

Throughout this series, references are made to various standards for hardware specification and barrier construction. The following articles are provided as a technical reference to assist architects, engineers, and security professionals in interpreting these standards and/or evaluating the vulnerability of existing security barriers.

A. Forced Entry Standards
B. Ballistic Protection Standards
C. Protective Barrier Materials & Construction

Facebook
Twitter
LinkedIn
Email

Risk Management & Workplace Violence

Risk Management and Workplace Violence

Risk Management & Workplace Violence

By Craig S. Gundry, PSP, cATO, CHS-III

Workplace Violence: The Risk in Perspective

By comparison to many other security risks, workplace violence incidents are low-moderate frequency events and rarely result in lethal consequences. According to US labor statistics, workplace violence is only responsible for 18% of deaths in professional office and healthcare settings—less than transportation accidents or even slips and falls.[i] Nevertheless, nearly 2 million American workers report having been victims of workplace violence each year.[ii] For reasons of liability, productivity, and duty of care, it is important that all employers implement reasonable measures to mitigate the probability and impact of workplace violence incidents.

Most incidents of workplace violence are examples of impromptu violence, spontaneous and unplanned acts of aggression often happening in the heat of the moment.[iii] These types of incidents can range from verbal threats and oral abuse all the way up the continuum of aggression to physical assault and non-premeditated murder.

Of greatest concern from a risk management perspective are acts of intended violence (also referred to as ‘targeted aggression’) which result in a planned, premeditated act.[iv] Most acts of mass homicide in workplace environments are examples of targeted violence and result from progression on a ‘pathway’ of development over time.

Mass Homicide in the Workplace

Many individuals who perpetrate mass violence align with Dr. Park Dietz’s definition of a Pseudocommando.[v] Pseudocommandos often evolve from angry, narcissistic personalities and harbor perceived injustices as a grievance for revenge. Violent fantasies become a refuge for the pseudocommando’s damaged ego and provide a sense of power and control.[vi] Without intervention, this process may continue into obsession and escalate until violent fantasy becomes a template for action. If this pathway progression continues unabated until nihilism takes place, commitment to violence is affirmed and often commenced in a planned manner or initiated by a trigger event (e.g., termination, demotion, family crisis, etc.).[vii]

By contrast to other security threats and even incidents of impromptu violence, acts of mass homicide are extremely low in frequency and rarely does probability as a sole factor justify risk reduction. In most cases, it’s the potentially devastating consequences of an attack that warrant concern. Aside from the obvious and horrific impact of loss of life, active assailant attacks universally result in extended disruption of facility operations, loss due to reduced productivity, and diversion of leadership attention to crisis management. The duration of operational disruption can span months before police release the facility as a crime scene, cleanup and remediation are completed, and post-incident recovery activities have concluded.

In cases where the horror of the event is deeply imprinted into the psyche of the public, the facility may be deemed permanently inhabitable due to its presence as a reminder of the tragedy. Rather than repair and restore Sandy Hook Elementary School, Newtown Public Schools opted to demolish the building and build a new replacement school at an estimated cost of $50M.[viii] Similarly, Florida’s Marjory Stoneman Douglas High School Public Safety Act authorized $25 million to replace building 12 in Parkland, Florida. In the aftermath of the 2016 Pulse Nightclub shooting, the owner decided to permanently close the business as a nightclub and rebuild the site as a memorial and museum.

Depending on the organization’s responsiveness in managing the post-incident psychological consequences, the effects of an attack can easily result in an exodus of employees and long-term negative impact on workplace culture. In addition to psychological wounds suffered by victims of attacks, the trauma of mass violence can extend far beyond the local community with measurable effects of sadness and anxiety experienced vicariously by people nationwide.[ix]

When all risk factors are assessed in context, it is often the combined results of duty of care obligation (i.e., legal and moral responsibility for occupant safety), community perceptions and expectations, and the potentially catastrophic consequences of an event that warrant a balanced and diligent approach to risk control.

Risk Management Strategy and Workplace Violence

Effective risk management programs employ a multi-layered approach to controlling risk by reducing both the Probability and Criticality of events.

In the context of security risk management, risk probability is the result of Threat (an adversary with intent and capability to cause harm) and Vulnerability (the state of conditions that would allow the adversary to succeed in causing the risk event). Proactive measures aim to reduce Risk Probability by either reducing Threat or reducing Vulnerability. If proactive measures are implemented effectively, they may be successful in reducing Risk Probability, but there is always an element of uncertainty. To further reduce risk, reactive/mitigative measures should be employed to reduce the harmful effect of risk events (Risk Criticality).

In protective design theory, this concept of employing multiple layers of proactive and mitigative measures aimed at risk reduction is often described as concentric rings of protection. The following diagram illustrates this concept as it relates to workplace violence. The outermost rings of the diagram (colored in blue) represent proactive measures aimed at reducing risk probability. This is then followed by inner rings (red) representing mitigative measures aimed at decreasing the impact of events.

Workplace Violence Prevention Program

Workplace Violence Prevention (Proactive Measures)

Proactive risk management starts with reducing potential Threat. As a first step, measures should be employed where feasible to reduce the likely presence of violent perpetrators. One example is subjecting applicants to criminal record checks and carefully screening candidates for indications of previous behavioral problems. Next, measures should be employed to reduce potential conditions that contribute to the formation of violent intent or progression on the pathway of targeted violence. Measures such as reinforcement of positive workplace culture, providing access to employee assistance programs, and using management practices that reinforce employee dignity all contribute to reducing potential threat.

Other threat reduction measures aimed at reducing the likelihood of violence by nonemployees (e.g., angry customers, criminals, etc.) include training personnel in conflict de-escalation, ‘do-not-admit’ and trespass of threatening patrons, and presence of visible security measures as a deterrent to aggressive behavior.

To address the possibility of a dangerous employee already within our midst, threat assessment and management is our next line of defense. Extensive research over the past 25 years has established that most acts of targeted aggression by employees are precipitated by behaviors that if recognized and properly assessed can warn of potential violence and provide opportunity for intervention. Effective implementation of threat assessment and management as a protective strategy requires establishing a system for investigating and assessing threats, training supervisors to identify behaviors of concern, and managing potentially threatening situations before they result in violence.

If an employee of concern is terminated, procedures should be employed to ensure the safety of staff and best alleviate potential grievance. Some examples of safety measures include conducting the termination in a manner that preserves the individual’s dignity, scheduling terminations in the late afternoon, having security nearby, and avoiding early warning or breaks which provide an opportunity for retrieving a weapon. If concerns are substantial, additional measures may be justified such as severance pay or surveillance over the following weeks to monitor the ex-employee’s behavior and warn/intervene if the individual travels to the facility without an appointment.

Consequence Management and Workplace Violence

The aforementioned measures are often effective in reducing the probability of violence. But if measures employed to prevent attacks are unsuccessful or someone targets the facility in a manner that evades our proactive influence, physical security becomes the next line of defense. In the case of a convenience store, this may simply mean the installation of bullet-resistant glazing at the checkout counter. For organizations at risk of active assailant attacks, effective physical security is paramount in reducing the overall consequences of the event.

For best performance, physical security design should integrate Detection, Delay, and Response elements in a manner that mathematically reconciles the time required for an attacker to commence mass killing and the time required for detection and response by security or police.

If an event does occur, additional measures should be implemented to mitigate the impact of the risk event. This includes items such as early event detection and alert communications, emergency response plans and employee training, effective provisions for egress/escape, availability of safe refuge rooms, and the expedited response of armed security or police officers capable of effectively neutralizing an attacker before he/she can cause mass casualties.

Risk Management and Adversary Applicability

Obviously, not all risk reduction measures are equally applicable to all situations. Measures that may be necessary and justified in an office environment are often quite different from those in settings such as retail stores or hospitals. Risk management strategy should focus on relevant workplace violence risks in a manner that satisfies the organization’s risk appetite while tending matters of operational needs, culture, branding, and budget.

Below is a table describing the general relevance of measures in reducing different types of workplace violence risks using the FBI’s four-category classification system:.[x] 

    • Type I – Violent acts by criminals who have no other connection with the workplace, but enter to commit robbery or another crime.
    • Type II – Violence directed at employees by customers, clients, patients, students, inmates, or any others for whom an organization provides services.
    • Type III – Violence against coworkers, supervisors, or managers by a present or former employee.
    • Type IV – Violence committed in the workplace by someone who doesn’t work there, but has a personal relationship with an employee—an abusive spouse or domestic partner.
Workplace Violence Prevention Measures

ANSI/ASIS Workplace Violence Prevention and Intervention Standard as a Guide for Best Practices

For those seeking to develop or improve a workplace violence prevention program, the newly updated ASIS/ANSI Workplace Violence Prevention and Intervention Standard is a great place to start. The ASIS/ANSI standard (formerly ASIS/SHRM WVP.1-2011) “provides an overview of policies, processes, and protocols that organizations can adopt to help identify, assess, respond to and mitigate threatening or intimidating behavior and violence affecting the workplace.”[xi]

The measures outlined in the standard are largely universal and can be adapted to organizations of almost any size. Some of the items addressed include the role and responsibilities of stakeholders, needs assessment, elements of policy, threat assessment and management practices, critical incident planning, employee training, and more.

In early 2020, a multi-disciplinary committee of experts completed a two-year review and revision of ASIS/SHRM WVP.1-2011 including the addition of a new Active Assailant Annex. In an upcoming article, we’ll explore some of the key measures outlined in the standard and differences between the updated document and the previous edition.

Facebook
Twitter
LinkedIn
Email

Copyright © 2019 by Craig S. Gundry, PSP, cATO, CHS-III

CIS consultants offer a range of services to assist organizations in managing risks of workplace aggression and active shooter violence.  Contact us for more information.

References

[i] Census of Fatal Occupational Injuries (CFOI). Bureau of Labor Statistics. N.p. 2015. | Cited percentage of 18% is derived from analysis of 2015 workplace fatalities for NAICS categories Health care and social assistance, Professional and business services, and Professional and technical services

[ii] Workplace Violence Overview. Occupational Safety and Health Administration. US Department of Labor. N.p. https://www.osha.gov/SLTC/workplaceviolence/. Accessed 25 October 2017.

[iii] Calhoun, Fredrick, and Weston, Stephen. Threat Assessment and Management Strategies: Identifying the Hunters and the Howlers. CRC Press. Boca Raton, FL. 2016. pp 25.

[iv] Ibid.

[v] Dietz, Park D. “Mass, Serial, and Sensational Homicides.” Bulletin of the New York Academy of Medicine.  62:49-91. 1986.

[vi] Meloy, J. Reid, and Hoffman, Jens. International Handbook of Threat Assessment. Oxford University Press. New York, NY. 2014.

[vii] Knoll, James. L. “The “Pseudocommando” Mass Murderer: Part II, The Language of Revenge.” The Journal of the American Academy of Psychiatry and the Law. 38:263–72, 2010

[viii] Delgadillo, Natalie. With Shootings on the Rise, Schools Turn to ‘Active Shooter’ Insurance. http://www.governing.com/topics/education/gov-cost-of-active-shooters-insurance.html. June 2018.

[ix] Dore, B., Ort, L., Braverman, O., & Ochsner, K. N. (2015). Sadness shifts to anxiety over time and distance from the national tragedy in Newtown, Connecticut. Psychological Science, 26(4), 363–373.

[X] Workplace Violence. Issues in Response. Federal Bureau of Investigation, U.S. Department of Justice, Washington, D.C. N.d.

[xi] ASIS/SHRM WVP.1-2011, Workplace Violence Prevention and Intervention. 2011.